
SQL Server 2017

Kevin Howell

Data & AI Technical Solutions Professional

November 2017

Agenda – SQL Server 2017

• Microsoft Vision & Overview

• SQL 2017 New Features

• SSAS New Features

• SSIS New Features

• SQL 2017 Editions

• SQL on Linux

• Graph Data & Queries

• Spatial

• T-SQL

• JSON

• Adaptive Query Processing

• Automatic Tuning

• In-Memory OLTP & Columnstore

• High Availability

• Migration Tools

• Bots**

United platform for the modern service provider

CUSTOMER

DATACENTER

SERVICE

PROVIDER

MICROSOFT

AZURE

CONSISTENT

PLATFORM

Enterprise-grade

Global reach, scale, and security to meet

business demands

Hybrid cloud

Consistent platform across multiple

environments and clouds

People-focused

Expands technical skill sets to the cloud for

new innovation

Microsoft vision for a new era

End-to-end mobile BI

on any device

Choice of platform

and language

Most secure

over the last 7 years

0

20

40

60

80

100

120

140

160

180

200

V
u

ln
e
ra

b
il

it
ie

s
(2

0
1

0
-2

0
1

6
)

A fraction of the cost

S
e

lf
-s

e
rv

ic
e

 B
I

p
e

r
u

s
e

r

Only commercial DB

with AI built-in

Microsoft Tableau Oracle

$120

$480

$2,230

Industry-leading

performance

1/10

Most consistent data platform

#1 OLTP performance

#1 DW performance

#1 price/performance

T-SQL

Java

C/C++

C#/VB.NET

PHP

Node.js

Python

Ruby

R

R and Python +

in-memory at massive scale

Native T-SQL scoring

S Q L S E R V E R 2 0 1 7
I N D U S T R Y - L E A D I N G P E R F O R M A N C E A N D S E C U R I T Y N O W O N L I N U X A N D D O C K E R

Private cloud Public cloud

In-memory across all workloads

1/10th the cost of Oracle

SQL Server 2017
Meeting you where you are

It’s the same SQL Server Database Engine that has many features and services
available for all your applications—regardless of your operational ecosystem.

Linux

Any data Any application Anywhere Choice of platform

T-SQL

Java

C/C++

C#/VB.NET

PHP

Node.js

Python

Ruby
1010
0101
0010

{ }

How we develop SQL

• Cloud-first but not cloud-only

• Use SQL Database to improve core SQL Server features and cadence

• Many interesting and compelling on-premises  cloud scenarios

SQL Server

and APS

Azure

SQL Virtual

Machines

Azure

SQL Database

Azure

SQL Data

Warehouse

SQL Server
2017—new
features

8

SQL Server 2016: Feature History
FEATURES

SQL

Server

2017

SQL

Server

2016

SQL

Server

2014

SQL

Server

2012

SQL

Server

2008 R2

SQL

Server

2008

Performance

In-Memory OLTP ✓ ✓ ✓   

In-Memory ColumnStore ✓ ✓ ✓ ✓  

Adaptive Query Processing & Automatic Plan Correction ✓     

Native T-SQL Scoring ✓     

Real-time operational analytics ✓ ✓    

Availability

Always On Availability Groups ✓ ✓ ✓ ✓  

Cross Platform High Availability ✓     

Windows Server Core Support ✓ ✓ ✓ ✓  

Security

Transparent Data Encryption ✓ ✓ ✓ ✓ ✓ ✓

Dynamic data masking ✓ ✓    

Row-Level Security ✓ ✓    

Always Encrypted ✓ ✓    

Cloud-Readiness

Backup to Microsoft Azure ✓ ✓ ✓   

Gallery of VM images in Microsoft Azure ✓ ✓ ✓ ✓ ✓ 

Stretch Database into Azure ✓ ✓    

Management &

Programmability

Policy Based Management ✓ ✓ ✓ ✓ ✓ ✓

Distributed Replay ✓ ✓ ✓ ✓  

Graph Data and Queries ✓     

Python ✓     

In-database Advanced Analytics “R” ✓ ✓    

Enhanced Features

New Features

N E W F E AT U R E S I N

S Q L S E R V E R 2 0 1 7

Suppor t for graph data and quer ies

Advanced Machine Learning wi th R & Python

Nat ive T-SQL scor ing

Adapt ive Quer y Process ing and Automatic Plan Correct ion

Cross Plat form HA (OS level redundancy)

Database Engine new features

Linux/Docker support
• RHEL, Ubuntu, SLES, and Docker

Adaptive query processing
• Faster queries just by upgrading

• Interleaved execution

• Batch-mode memory grant feedback

• Batch-mode adaptive joins

Database Engine new features

Graph
• Store relationships using nodes/edges

• Analyze interconnected data using
node/edge query syntax

SELECT r.name
FROM Person AS p, likes AS l1, Person AS p2, likes AS l2,
Restaurant AS r
WHERE MATCH(p-(l1)->p2-(l2)->r)
AND p.name = 'Chris'

Automatic tuning
• Automatic plan correction—identify, and optionally fix, problematic

query execution plans causing query performance problems

• Automatic index management—make index recommendations (Azure
SQL Database only)

Database Engine new features

Enhanced performance for natively compiled T-SQL modules
• OPENJSON, FOR JSON, JSON

• CROSS APPLY operations

• Computed columns

New string functions
• TRIM, CONCAT_WS, TRANSLATE, and STRING_AGG with support for

WITHIN GROUP (ORDER BY)

Bulk import now supports CSV format and Azure Blob storage as
file source

Database Engine new features

Native scoring with T-SQL PREDICT

Resumable online index rebuild
• Pause/resume online index rebuilds

Clusterless read-scale availability groups
• Unlimited, geo-distributed, linear read

scaling

P
S1

S2

S3

S4

Integration Services new features

Integration Services scale out
• Distribute SSIS package execution more easily across multiple workers, and

manage executions and workers from a single master computer

Integration Services on Linux
• Run SSIS packages on Linux computers

• Currently some limitations

Connectivity improvements
• Connect to the OData feeds of Microsoft Dynamics AX Online and

Microsoft Dynamics CRM Online with the updated OData components

Analysis Services new features

1400 Compatibility level for tabular models

Object level security for tabular models

Get data enhancements
• New data sources, parity with Power BI Desktop and Excel 2016

• Modern experience for tabular models

Enhanced ragged hierarchy support
• New Hide Members property to hide blank members in ragged hierarchies

Detail Rows
• Custom row set contributing to a measure value

• Drillthrough action in more detail than the aggregated level in tabular
models

Reporting Services new features

Comments
• Comments are now available for reports, to add perspective and

collaborate with others—you can also include attachments with comments

Broader DAX support
• With Report Builder and SQL Server Data Tools, you create native DAX

queries against supported tabular data models by dragging desired fields
to the query designers

Standalone installer
• SSRS is no longer distributed through SQL Server setup

• Power BI Report Server

Machine Learning Services new features

Python support
• Python and R scripts are now supported

• Revoscalepy—Pythonic equivalent of RevoScaleR—parallel algorithms for
data processing with a rich API

MicrosoftML
• Package of machine learning algorithms and transforms (with Python

bindings), as well as pretrained models for image extraction or sentiment
analysis

Editions,
features, and
capacity

SQL Server Editions

SQL Server Edition Definition

Enterprise
The premium offering, SQL Server Enterprise Edition delivers comprehensive high-end datacenter capabilities with extremely fast

performance, unlimited virtualization, and end-to-end business intelligence—enabling high service levels for mission critical workloads

and end user access to data insights.

Standard
SQL Server Standard Edition delivers basic data management and a business intelligence database for departments and small

organizations to run their applications. It supports common development tools for on-premises and the cloud—enabling effective

database management with minimal IT resources.

Web
SQL Server Web Edition is a low total-cost-of-ownership option for web hosters and web VAPs to provide scalability, affordability, and

manageability capabilities for small to large scale web properties.

Developer
SQL Server Developer Edition lets developers build any kind of application on top of SQL Server. It includes all the functionality of

Enterprise Edition but is licensed for use as a development and test system, not as a production server. SQL Server Developer is an ideal

choice for people who build SQL Server and test applications.

Express

Express Edition is the entry-level, free database and is ideal for learning and building desktop and small server data-driven applications.

It’s the best choice for independent software vendors, developers, and hobbyists who build client applications. If you need more

advanced database features, SQL Server Express can be seamlessly upgraded to other higher-end versions of SQL Server. SQL Server

Express LocalDB is a lightweight version of Express that has all of its programmability features, yet runs in user mode and has a fast,

zero-configuration installation and a short list of prerequisites.

Capacity limits by edition

Feature Enterprise/Developer Standard Web Express

Maximum compute capacity used by a single

instance—SQL Server Database Engine
Operating system maximum

Limited to lesser of four sockets or 24

cores

Limited to lesser of four sockets or 16

cores

Limited to lesser of one socket or four

cores

Maximum compute capacity used by a single

instance—Analysis Services or Reporting

Services

Operating system maximum
Limited to lesser of four sockets or 24

cores

Limited to lesser of four sockets or 16

cores

Limited to lesser of one socket or four

cores

Maximum memory for buffer pool per

instance of SQL Server Database Engine
Operating system maximum 128 GB 64 GB 1410 MB

Maximum memory for columnstore segment

cache per instance of SQL Server Database

Engine

Unlimited memory 32 GB 16 GB 352 MB

Maximum memory-optimized data size per

database in SQL Server Database Engine
Unlimited memory 32 GB 16 GB 352 MB

Maximum relational database size 524 PB 524 PB 524 PB 10 GB

SQL Server
on Linux

Multiple

data types

Heterogeneous
environments

Different

development

languages

On-premises,

cloud, and hybrid

environments

enterprise
DB market
runs on Linux

36%

Evolution of SQL Server

HDInsight on Linux

R Server on Linux

Linux in Azure

SQL Server drivers

and connectivity

Visual Studio Code extension

for SQL Server

T-SQL

Java

C/C++

C#/VB.NET

PHP

Node.js

Python

Ruby

1010
0101
0010

{ }

20K+
applications for
private preview

Power of the SQL Server Database Engine on the

platform of your choice

Linux distributions: RedHat
Enterprise Linux (RHEL), Ubuntu, and
SUSE Linux Enterprise Server (SLES)

Docker: Windows and Linux
containers

Windows Server/Windows 10

Linux

Linux/Windows container

Windows

Buying a SQL Server license gives
you the option to use it on
Windows Server, Linux, or Docker.

Regardless of where you run it—
VM, Docker, physical, cloud, on-
premises—the licensing model is
the same; available features depend
on which edition of SQL Server you
use.

LICENSE

Same license, new choice

Linux-native user experience

Supported platforms

Platform Supported version(s) Supported file system(s)

Red Hat Enterprise Linux 7.3 XFS or EXT4

SUSE Linux Enterprise Server v12 SP2 EXT4

Ubuntu 16.04 EXT4

Docker Engine (on Windows, Mac, or Linux) 1.8+ N/A

System requirements for SQL Server on Linux

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup#system

Installing SQL Server on Linux

Add the SQL Server repository to your package manager

Install the mssql-server package

Run mssql-conf setup to configure SA password and edition

Configure the firewall to allow remote connections (optional)

SQL Server on Linux overview page

sudo curl -o /etc/yum.repos.d/mssql-server.repo https://packages.microsoft.com/config/rhel/7/mssql-server-2017.repo

sudo yum update

sudo yum install -y mssql-server

sudo /opt/mssql/bin/mssql-conf setup

sudo firewall-cmd --zone=public --add-port=1433/tcp --permanent

sudo firewall-cmd --reload

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-overview

Tools and programmability

• Windows-based SQL Server tools—like

SSMS, SSDT, and Profiler—work when

connected to SQL Server on Linux

• All existing drivers and frameworks

supported

• Third-party tools continue to work

• Native command-line tools—sqlcmd, bcp

• Visual Studio Code mssql extension

What’s available on Linux?

Operations features
• Support for RHEL, Ubuntu, SLES, Docker

• Package-based installs

• Support for Open Shift, Docker Swarm

• Failover clustering via Pacemaker

• Backup/Restore

• SSMS on Windows connected to Linux

• Command-line tools: sqlcmd, bcp

• Transparent Data Encryption

• Backup Encryption

• SCOM management pack

• DMVs

• Table partitioning

• SQL Server Agent

• Full-Text Search

• Integration Services

• Active Directory (integrated)
authentication

• TLS for encrypted connections

What’s available on Linux?

Programming features
• All major language driver compatibility

• In-Memory OLTP

• Columnstore indexes

• Query Store

• Compression

• Always Encrypted

• Row-Level Security, Data Masking

• Auditing

• Service Broker

• CLR

• JSON, XML

• Third-party tools

Features not currently supported on Linux

Graph
processing

A graph is a collection of nodes and edges

Undirected graph

Directed graph

Weighted graph

Property graph

What is a graph?

Node

Person Person

Typical scenarios for graph databases

A

Hierarchical or interconnected data,

entities with multiple parents.

Analyze interconnected data,

materialize new information from

existing facts. Identify connections

that are not obvious.

Complex many-to-many

relationships. Organically

grow connections as the

business evolves.

Introducing SQL Server Graph

• A collection of node and edge tables
in the database

• Language Extensions
• DDL Extensions—create node and edge

tables

• DML Extensions—SELECT - T-SQL MATCH
clause to support pattern matching and
traversals; DELETE, UPDATE, and INSERT
support graph tables

• Graph support is integrated into the
SQL Server ecosystem

Database

Contains

Graph

isCollectionOf

Node table

has

Properties

Edge table

may or may

not have

Properties

Node Table(s)

Edges connect

Nodes

Edge Table(s)

DDL Extensions

• Create node and edge tables

• Properties associated with
nodes and edges

CREATE TABLE Product (ID INTEGER PRIMARY KEY,
name VARCHAR(100)) AS NODE;

CREATE TABLE Supplier (ID INTEGER PRIMARY KEY,
name VARCHAR(100)) AS NODE;

CREATE TABLE hasInventory AS EDGE;

CREATE TABLE located_at(address varchar(100))
AS EDGE;

DML Extensions

Multihop navigation and join-free pattern
matching using the MATCH predicate:

SELECT Prod.name as ProductName,
Sup.name as SupplierName

FROM Product Prod, Supplier Sup,
hasInventory hasIn,
located_at supp_loc,
Customer Cus,
located_at cust_loc,
orders, location loc

WHERE
MATCH(
cus-(orders)->Prod<-(hasIn)-Sup
AND
cus-(cust_loc)->location<-(supp_loc)-Sup

) ;

Spatial

Spatial

Spatial data represents information about the physical location and shape of
geometric objects. These objects can be point locations, or lines, or more
complex objects such as countries, roads, or lakes.

SQL Server supports two spatial data types: the geometry data type and the
geography data type.

• The geometry type represents data in a Euclidean (flat)
coordinate system.

• The geography type represents data in a round-earth
coordinate system.

Spatial functionality

• Simple and compound spatial data types supported

• Import and export spatial data to industry-standard formats
(Open Geospatial Consortium WKT and WKB)

• Functions to query the properties of, the behaviours of, and the
relationships between, spatial data instances

• Spatial columns can be indexed to improve query performance

Spatial tooling

• SSMS includes the
ability to display a
visual representation of
spatial results

Spatial enhancements (SQL Server 2017)

• The FullGlobe geometry data type—FullGlobe is a special type of polygon that covers

the entire globe. FullGlobe has an area, but no borders or vertices.

Transact-SQL
extensions

T-SQL TRIM

TRIM ([characters FROM] string)

Removes the space character (char(32)) or other specified characters from the start or end of a string.

SELECT TRIM (' test ') AS Result ;

Result

test

Removing the space character from both sides of a string
(equivalent to LTRIM(RTRIM(string)))

SELECT TRIM('.,! ' FROM '# test .') AS Result;

Result

test

Removes specified characters from both sides of a string
(Trimming multiple characters)

T-SQL CONCAT_WS

CONCAT_WS (separator, argument1, argument2 [, argumentN]…)

Concatenates a variable number of arguments with a delimiter specified in the first argument.

SELECT CONCAT_WS(' - ','one','two','three','four') AS Result ;

Result

one - two - three - four

Concatenating with a delimiter

SELECT CONCAT_WS(' - ','one',NULL,'two',NULL,'three',NULL,'four') AS Result ;

Result

one - two - three - four

Concatenation ignores NULL

T-SQL TRANSLATE

TRANSLATE (inputString, characters, translations)

Returns the string provided as a first argument after some characters specified in the second
argument are translated into a destination set of characters.

SELECT TRANSLATE('2*[3+4]/{7-2}', '[]{}', '()()') AS Result ;

Result

2*(3+4)/(7-2)

Replace square and curly braces with regular braces

SELECT TRANSLATE('[137.4, 72.3]' , '[,]', '()') AS Point, TRANSLATE('(137.4 72.3)' , '()', '[,]') AS Coordinates ;

Point Coordinates
------------- -------------
(137.4 72.3) [137.4,72.3]

Convert GeoJSON points into WKT

T-SQL STRING_AGG

STRING_AGG (expression, separator) [<order_clause>]

<order_clause> ::=
WITHIN GROUP (ORDER BY <order_by_expression_list> [ASC | DESC])

Concatenates the values of string expressions and places separator values between them. The
separator is not added at the end of string.

SELECT STRING_AGG (ISNULL(FirstName,'N/A'), ',') AS csv FROM Person.Person ;

csv

Syed,Catherine,Kim,Kim,Kim,Hazem,Sam,Humberto,Gustavo,Pilar,Pilar,Aaron,Adam,Alex,Alexandra,Allison,Amanda,Amber,Andrea,Angel

Generate a list of names separated with a comma (without NULL values)

SELECT town, STRING_AGG (email, ';') WITHIN GROUP (ORDER BY email ASC) AS emails FROM dbo.Employee GROUP BY town ;

town emails
------- ---
Seattle catherine0@adventure-works.com;kim2@adventure-works.com;syed0@adventure-works.com
LA hazem0@adventure-works.com;sam1@adventure-works.com

Generate a sorted list of emails per town

T-SQL BULK INSERT / OPENROWSET(BULK…)

[[,] FORMAT = 'CSV']
[[,] FIELDQUOTE = 'quote_characters']

Additional options added that provide support for CSV format data files.

Data files and format files can now be loaded from Azure Blob storage.

JSON

JSON support

• Not a built-in data type—JSON is stored as varchar or nvarchar

• Format SQL data or query results as JSON

• Convert JSON to SQL data

• Query JSON data

• Index JSON data

FOR JSON

In PATH mode, you use the dot syntax—for example, 'Item.Price‘—to format nested
output. This example also uses the ROOT option to specify a named root element.

Adaptive
query
processing

Adaptive query processing

Three features to improve query performance

Enabled when the database is in SQL Server 2017 compatibility mode (140)

ALTER DATABASE current SET COMPATIBILITY_LEVEL = 140;

Adaptive Query

Processing

Interleaved

Execution

Batch Mode Memory

Grant Feedback

Batch Mode

Adaptive Joins

Query processing and cardinality estimation

When estimates are accurate (enough), we make informed decisions around

order of operations and physical algorithm selection

CE uses a combination of statistical techniques and assumptions

During optimization, the cardinality estimation (CE) process is responsible for

estimating the number of rows processed at each step in an execution plan

Common reasons for incorrect cardinality estimates

Missing

statistics
Stale statistics

Inadequate

statistics

sample rate

Bad parameter

sniffing

scenarios

Out-of-model

query

constructs

• For example,

MSTVFs, table

variables, XQuery

Assumptions

not aligned

with data

being queried

• For example,

independence

versus correlation

Cost of incorrect estimates

Slow query

response time due to

inefficient plans

Excessive resource

utilization (CPU,

Memory, IO)

Spills to disk

Reduced throughput

and concurrency

T-SQL refactoring to

work around off-model

statements

Interleaved execution

Pre 2017

2017+

100 rows guessed for MSTVFs

MSTVF identified 500,000 rows assumed

Performance issues if skewed

Execute MSTVF Good performance

Problem: Multi-statement
table valued functions
(MSTVFs) are treated as a
black box by QP and we use
a fixed optimization guess.

Interleaved execution will
materialize row counts for
MSTVFs.

Downstream operations will
benefit from the corrected
MSTVF cardinality estimate.

Optimize Execute

Optimize Execute Optimize Execute…

Batch mode memory grant feedback

Problem: Queries can spill to disk
or take too much memory, based
on poor cardinality estimates.

Memory grant feedback (MGF)
will adjust memory grants based
on execution feedback.

MGF will remove spills and
improve concurrency for
repeating queries.

Batch mode adaptive joins

Problem: If cardinality estimates are
skewed, we might choose an
inappropriate join algorithm.

Batch mode adaptive joins (AJ) will
defer the choice of hash join or
nested loop until after the first join
input has been scanned.

AJ uses nested loop for small inputs,
and hash joins for large inputs.

Build input

Adaptive
threshold

Hash join

Nested loop

Yes

No

Automatic
tuning

Automatic tuning

Automatic plan correction identifies problematic plans and fixes
SQL plan performance problems:

Adapt

Verify

Learn

Automatic plan choice detection

sys.dm_db_tuning_recommendations

Automatic plan correction

sys.dm_db_tuning_recommendations by enabling the AUTOMATIC_TUNING
database property:

ALTER DATABASE current
SET AUTOMATIC_TUNING (FORCE_LAST_GOOD_PLAN = ON);

In-Memory OLTP
&

ColumnStore

In-Memory Online Transaction Processing (OLTP)

In-Memory OLTP is the premier technology available in SQL Server
and Azure SQL Database for optimizing performance of transaction
processing, data ingestion, data load, and transient data scenarios.

Memory-optimized tables outperform traditional disk-based tables,

leading to more responsive transactional applications.

Memory-optimized tables also improve throughput and reduce latency

for transaction processing, and can help improve performance of

transient data scenarios such as temp tables and ETL.

SQL Server provides In-Memory OLTP features that can greatly improve the

performance of application systems.

Steps for In-Memory OLTP

ALTER DATABASE CURRENT
SET COMPATIBILITY_LEVEL = 140;
GO

Recommended to set the database to the latest compatibility level, particularly for In-Memory OLTP:

ALTER DATABASE CURRENT SET MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT=ON
GO

When a transaction involves both a disk-based table and a memory-optimized table, it’s essential that the memory-

optimized portion of the transaction operates at the transaction isolation level named SNAPSHOT.

ALTER DATABASE AdventureWorks ADD FILEGROUP AdventureWorks_mod CONTAINS memory_optimized_data
GO
ALTER DATABASE AdventureWorks ADD FILE (NAME='AdventureWorks_mod', FILENAME='c:\var\opt\mssql\data\AdventureWorks_mod') TO
FILEGROUP AdventureWorks_mod
GO

Before you can create a memory-optimized table, you must first create a memory-optimized FILEGROUP and a

container for data files:

In-Memory OLTP architecture

Memory-Optimized Data Filegroup
Data Filegroup

SQL Server.exeMemory-Optimized Tables and Indexes

TDS (Client Server Communications) Handler and Session Management

Natively Compiled

SPs and Schema

Buffer Pool for Tables and Indexes

Client App

Transaction Log

Query

Interop T1 T3T2

T1 T3T2

Tables

Indexes

T-SQL Query Execution

T1 T3T2

Parser,

Catalog,

Optimizer

Native

Compiler
In-Memory

OLTP

Component

Key

Existing SQL

Component

Generated .dll

Memory-optimized tables

In short, memory-optimized tables are stored in main memory as opposed to on disk.

Memory-optimized tables are fully durable by default; data is persisted to disk in the
background.

Memory-optimized tables can be accessed with T-SQL, but are accessed more efficiently with
natively compiled stored procedures.

Memory-optimized tables

The primary store for memory-optimized tables is main memory; unlike disk-based tables, data

does not need to be read in to memory buffers from disk.

CREATE TABLE dbo.ShoppingCart (
ShoppingCartId INT IDENTITY(1,1) PRIMARY KEY NONCLUSTERED,
UserId INT NOT NULL INDEX ix_UserId NONCLUSTERED HASH WITH (BUCKET_COUNT=1000000),
CreatedDate DATETIME2 NOT NULL,
TotalPrice MONEY
) WITH (MEMORY_OPTIMIZED=ON)
GO

To create a memory-optimized table, use the MEMORY_OPTIMIZED = ON clause

INSERT dbo.ShoppingCart VALUES (8798, SYSDATETIME(), NULL)
INSERT dbo.ShoppingCart VALUES (23, SYSDATETIME(), 45.4)
INSERT dbo.ShoppingCart VALUES (80, SYSDATETIME(), NULL)
INSERT dbo.ShoppingCart VALUES (342, SYSDATETIME(), 65.4)

Insert records into the table

Natively compiled stored procedures

Natively compiled stored procedures are Transact-SQL stored procedures that are
compiled to native code and can access memory-optimized tables.

For information on creating natively complied stored procedures, see:

https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/creating-natively-compiled-stored-procedures

Natively compiled stored procedures implement a subset of T-SQL. For more information, see:

https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/supported-features-for-natively-compiled-t-sql-modules

This allows for efficient execution of the queries and business logic in the stored procedure.

Native compilation enables faster data access and more efficient
query execution than interpreted (traditional) Transact-SQL.

In-Memory OLTP enhancements (SQL Server 2017)

• sp_spaceused is now supported for memory-optimized tables.

• sp_rename is now supported for memory-optimized tables and natively compiled T-SQL modules.

• CASE statements are now supported for natively compiled T-SQL modules.

• The limitation of eight indexes on memory-optimized tables has been eliminated.

• TOP (N) WITH TIES is now supported in natively compiled T-SQL modules.

• ALTER TABLE against memory-optimized tables is now substantially faster in most cases.

• Transaction log redo of memory-optimized tables is now done in parallel. This bolsters faster recovery times and significantly increases the

sustained throughput of AlwaysOn Availability Group configuration.

• Memory-optimized filegroup files can now be stored on Azure Storage. Backup/Restore of memory-optimized files on Azure Storage is

supported.

• Support for computed columns in memory-optimized tables, including indexes on computed columns.

• Full support for JSON functions in natively compiled modules, and in check constraints.

• CROSS APPLY operator in natively compiled modules.

• Performance of B-tree (nonclustered) index rebuild for MEMORY_OPTIMIZED tables during database recovery has been significantly optimized.

This improvement substantially reduces the database recovery time when nonclustered indexes are used.

Columnstore

Data stored as columns

SQL Server performance features: Columnstore

Columnstore

A technology for storing, retrieving, and managing data by

using a columnar data format called a columnstore. You

can use columnstore indexes for real-time analytics on

your operational workload.

Key benefits

Provides a very high level of data compression, typically

10x, to reduce your data warehouse storage cost

significantly. Indexing on a column with repeated values

vastly improves performance for analytics.

Improved performance:

• More data fits in memory

• Batch-mode execution

Columnstore: Clustered vs. nonclustered indexes

In SQL Server, rowstore refers to a table where the underlying data storage format is a heap,
clustered index, or memory-optimized table.

Data that is logically organized as a table with rows
and columns, and then physically stored in a row-
wise data format.

Rowstore

Data that is logically organized as a table with rows
and columns, and physically stored in a column-
wise data format.

Columnstore

Columnstore: Clustered vs. nonclustered indexes

A secondary index on the standard table

(rowstore).

Nonclustered index

The primary storage for the entire table.

Clustered index

Both columnstore indexes offer high compression (10x) and improved query performance.

Nonclustered indexes enable a standard OLTP workload on the underlying rowstore, and a
separate simultaneous analytical workload on the columnstore—with negligible impact to
performance (Real-Time Operational Analytics).

Steps to creating a columnstore (NCCI)

Add a columnstore index to the table by executing the T-SQL

SELECT ProductID, SUM(UnitPrice) SumUnitPrice, AVG(UnitPrice) AvgUnitPrice,
SUM(OrderQty) SumOrderQty, AVG(OrderQty) AvgOrderQty

FROM Sales.SalesOrderDetail
GROUP BY ProductID
ORDER BY ProductID

Execute the query that should use the columnstore index to scan the table

SELECT * FROM sys.indexes WHERE name = 'IX_SalesOrderDetail_ColumnStore'
GO

SELECT *
FROM sys.dm_db_index_usage_stats

WHERE database_id = DB_ID('AdventureWorks')
AND object_id = OBJECT_ID('AdventureWorks.Sales.SalesOrderDetail');

Verify that the columnstore index was used by looking up its object_id and

confirming that it appears in the usage stats for the table

CREATE NONCLUSTERED COLUMNSTORE INDEX [IX_SalesOrderDetail_ColumnStore]
ON Sales.SalesOrderDetail
(UnitPrice, OrderQty, ProductID)

GO

Columnstore index enhancements (SQL Server 2017)

• Clustered columnstore indexes now support LOB columns (nvarchar(max),

varchar(max), varbinary(max))

• Online nonclustered columnstore index build and rebuild support added

Real-time

analytics/

HTAP

Real-time analytics/HTAP

SQL Server’s support for columnstore and In-Memory allows you to generate
analytics in real time, direct from your transactional databases. This pattern is
called Hybrid Transactional and Analytical Processing (HTAP), because it
combines OLTP and OLAP in one database.

• Analytics can be performed on operational data with minimal overhead

• Improving the timeliness of analytics adds significant business value

Traditional operational/analytics architecture

Key issues

• Complex implementation

• Requires two servers (capital
expenditures and operational expenditures)

• Data latency in analytics

• High demand—requires real-time analytics

IIS Server

BI analysts

Minimizing data latency for analytics

Challenges
• Analytics queries are resource intensive and can cause

blocking

• Minimizing impact on operational workloads

• Sub-optimal execution of analytics on relational schema

Benefits
• No data latency

• No ETL

• No separate data warehouse

BI analysts

IIS Server

Real-time analytics/HTAP

The ability to run analytics queries concurrently with operational
workloads using the same schema.

Goals:
• Minimal impact on operational workloads with concurrent analytics

• Performance analytics for operational schema

Not a replacement for:
• Extreme analytics performance queries that are possible only using customized schemas (for example,

Star/Snowflake) and preaggregated cubes

• Data coming from nonrelational sources

• Data coming from multiple relational sources requiring integrated analytics

0100101010110
SQL Server

OLTP

SQL Server
Data Warehouse

ETL

In-memory
ColumnStore

In-memory
OLTP

Real-time business problem

detection

Business problem

2-24
hrs

Real-time operational analytics
In-memory

• Improve transactional performance

with row-based in-memory OLTP

• Speed analytics and reduce storage

needs with ColumnStore

compression

• Combine for real-time operational

analytics (HTAP)

• Speed query performance without

tuning using new Adaptive Query

Processing
•
• Maintain performance when making

app changes with Automatic Plan

Correction

built-in

M
issio

n
 critica

l O
LT

P

High
availability

High availability and disaster recovery

• Resilience against guest and OS level
failures

• Planned and unplanned events

• Minimum downtime for patching and
upgrades

• Minutes RTO

Simple HADR

VM failure

• Protection against accidental or
malicious data corruption

• DR protection

• Minutes to hours RTO

Backup/restore

• Instance level protection

• Automatic failure detection and
failover

• Seconds to minutes RTO

• Resilience against OS and SQL Server
failures

Standard HADR

Failover cluster

• AG with two replicas

• Replaces Database Mirroring

Basic Availability Groups

• Warm standbys for DR

Log shipping

• Database level protection

• Seconds RTO

• No data loss

• Recover from unplanned outage

• No downtime for planned
maintenance

• Offload read/backup workload to
active secondaries

• Failover to geographically
distributed secondary site

Availability Groups

Mission critical HADR

Always On

• Failover on SQL Server instance level

• Shared storage (SAN/SMB)

• Failover can take minutes based on load

• Multi-node clustering

• Passive secondary nodes

• Failover on database level

• Direct attached storage

• Failover takes seconds

• Multiple secondaries

• Active secondaries

Failover cluster instances
for servers

Availability Groups
for groups of databases

Cluster nodeCluster node

Failover cluster instances

Server failover

Shared storage

Multi-node clustering

Passive secondary nodes

Failover in minutes

Windows and Linux failover
clusters are supported

SQL Server 2017

Shared storage

SQL Server 2017
SQL
Server
failover
cluster
instance

Configuring failover clusters on Linux

1. Set up and configure the operating system
on each cluster node.

2. Install and configure SQL Server on each
cluster node.

3. Configure shared storage and move
database files.

4. Install and configure Pacemaker on each
cluster node.

5. Create the cluster.

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-shared-disk-cluster-configure

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-shared-disk-cluster-configure

Always On Availability Groups

Availability Groups: High availability and disaster recovery solution where one or several
databases failover together.

SQL Server 2017 supports one primary, and up to eight secondaries, for a total of nine
replicas.

Secondaries can be enabled as read-only replicas, which can be load balanced.

Storage Storage

Failover cluster Failover cluster Azure region Azure region

Availability Groups and failover clustering (Windows)

Always On:
Failover Cluster Instances and
Availability Groups work together
to ensure data is accessible
despite failures

Windows Server Failover Clustering (WSFC) cluster

Network Subnet Network Subnet

Storage

Node NodeNodeNodeNode

SQL Server

Instance

SQL Server

Instance

SQL Server

Instance

AlwaysOn SQL Server

Failover Cluster Instance

Secondary Replica Secondary Replica

Always On Availability Group

Instance

Network Name

WSFC

Configuration

WSFC

Configuration

WSFC

Configuration

WSFC

Configuration

WSFC

Configuration

Instance

Network Name

Instance

Network Name

Instance

Network Name

Availability Group Listener Virtual Network Name

Storage Storage Shared Storage

Secondary Replica Primary Replica

Network Subnet Network Subnet

Storage

Node NodeNodeNodeNode

SQL Server

Instance

SQL Server

Instance

SQL Server

Instance

AlwaysOn SQL Server

Failover Cluster Instance

Instance

Network Name

Pacemaker

Configuration

Pacemaker

Configuration

Pacemaker

Configuration

Pacemaker

Configuration

Pacemaker

Configuration

Instance

Network Name

Instance

Network Name

Instance

Network Name

Storage Storage Shared Storage

Availability Groups and failover clustering (Linux)

Always On:
Failover Cluster Instances and
Availability Groups work together
to ensure data is accessible
despite failures

Pacemaker Cluster

Pacemaker cluster virtual IP

DNS name (manual registration)

Secondary Replica Secondary Replica

Always On Availability Group

Secondary Replica Primary Replica

Always On cross-platform capabilities

Mission critical availability on any platform

• Always On Availability Groups for

Linux
NEW*

and Windows for HA

and DR

• Flexibility for HA architectures
NEW*

• Ultimate HA with OS-level
redundancy and failover

• Load balancing of readable
secondaries

•High Availability

•Offload backups

•Scale BI
reporting

•Enables testing

•Enables
migrations

https://blogs.msdn.microsoft.com/bobsql/2016/09/26/sql-server-2016-it-just-runs-faster-always-on-availability-groups-turbocharged/

Guarantee commits on

synchronous secondary replicas

Use REQUIRED_COPIES_TO_COMMIT with CREATE

AVAILABILITY GROUP or ALTER AVAILABILITY GROUP.

When REQUIRED_COPIES_TO_COMMIT is set to a

value higher than 0, transactions at the primary

replica databases will wait until the transaction is

committed on the specified number of synchronous

secondary replica database transaction logs.

If enough synchronous secondary replicas are not

online, write transactions to primary replicas will stop

until communication with sufficient secondary replicas

resumes.

Enhanced Always On Availability Groups (SQL Server 2017)

AG_Listener

New York
(Primary)

Asynchronous data
movement

Synchronous data
movement

Unified HA solution

Hong Kong
(Secondary)

New Jersey
(Secondary)

CLUSTER_TYPE

CLUSTER_TYPE Use with CREATE AVAILABILITY

GROUP. Identifies the type of server cluster manager

that manages an availability group. Can be one of

the following types:

WSFC: Windows Server failover cluster. On

Windows, it is the default value for

CLUSTER_TYPE.

EXTERNAL: A cluster manager that is not a

Windows Server failover cluster—for example,

on Linux with Pacemaker.

NONE: No cluster manager. Used for a read-

scale availability group.

Enhanced Always On Availability Groups (SQL Server 2017)

AG_Listener

New York
(Primary)

Asynchronous data
movement

Synchronous data
movement

Unified HA solution

Hong Kong
(Secondary)

New Jersey
(Secondary)

DR

Build a mission critical enterprise application

Scenario
• All-Linux infrastructure

• Application-level protection

• Automatic and “within seconds”
failover during unplanned outages

• No downtime during planned
maintenance

• Performance-sensitive application

• DR required for regulatory
compliance

Solution
HADR with Always On Availability Groups on
Linux or Windows

HA

P

BackupsReports

Sync Log

Synchronization

Async Log

Synchronization

Provide responsive regional BI with Azure and AG

Scenario
• Primary replica in on-premises

datacenter

• Secondary read-only replicas in
on-premises datacenter used for
reporting/BI

• BI generated in other geographical
regions performs poorly because
of network bandwidth limitations

• No on-premises datacenters in
other geographical regions

Solution
Hybrid Availability Group with read-only
secondary in Azure (other region)

P

S1

S3

S2

Hybrid AG

Scale/DR with Distributed Availability Groups

Scenario
• Availability Group must span

multiple datacenters

• Not possible to add all servers to a
single WSFC (datacenter
networks/inter-domain trust)

• Secondary datacenter provides DR

• Geographically distributed read-only
replicas required

Solution
Distributed Always On Availability Groups on
Linux or Windows

Async Log

Synchronization

Migration/testing

Scenarios
• ISV solution built on SQL Server on

Windows

• Linux Certification

• Enterprise moving to an all-Linux
infrastructure

• Rigorous business requirements

• Seamless migration

Solution
Minimum downtime and HA for cross-
platform migrations with Distributed
Availability Groups

Migration/testing

Improve read concurrency with read-scale

Availability Groups
Scenario
• SaaS app (website)

• Catalog database with high volume
of concurrent read-only transactions

• Bottlenecks on Availability Groups
primary due to read workloads

• Increased response time

• HA/DR elements of Availability
Groups not required

Solution
Read-scale Availability Groups

• No cluster required

• Both Linux and Windows

P
S1

S2

S3

S4

Temporal
tables

Data changes over time
• Tracking and analyzing changes is often important

Temporal in DB
• Automatically tracks history of data changes

• Enables easy querying of historical data states

Advantages over workarounds
• Simplifies app development and maintenance

• Efficiently handles complex logic in DB engine

Why temporal?

Time travel Data audit

Slowly changing
dimensions

Repair record-level
corruptions

Temporal enhancements (SQL Server 2017)

• System-versioned temporal tables now support CASCADE DELETE and CASCADE

UPDATE

• Temporal tables retention policy support added

Upgrading

and migrating

to SQL Server

2017

Upgrade and migration tools

Data Migration Assistant (DMA)
• Upgrade from previous version of SQL Server (on-premises or SQL Server

2017 in Azure VM)

SQL Server Migration Assistant
• Migrate from Oracle, MySQL, SAP ASE, DB2, or Access to SQL Server 2017

(on-premises or SQL Server 2017 in Azure VM)

Azure Database Migration Service
• Migrate from SQL Server, Oracle, or MySQL to Azure SQL Database or SQL

Server 2017 in Azure VM

Upgrading to SQL Server 2017

In-place or side-by-side upgrade path from:
• SQL Server 2008

• SQL Server 2008 R2

• SQL Server 2012

• SQL Server 2014

• SQL Server 2016

Side-by-side upgrade path from:
• SQL Server 2005

Use Data Migration Assistant to prepare for migration

Legacy SQL Server instance

DMA: Assess and upgrade schema

1. Assess and identify issues

2. Fix issues

3. Upgrade database

Data Migration Assistant
SQL Server 2017

Data Migration Assistant

https://www.microsoft.com/en-us/download/details.aspx?id=53595

Choosing a migration target
“What’s the best path for me?”

Migrating to SQL Server 2017 from other platforms

Oracle

SAP ASE

DB2

Identify apps
for migration

Use migration
tools and partners

Deploy to
production

SQL Server

Migration Assistant

Global partner

ecosystem

AND

SQL Server 2017

on Windows

SQL Server 2017

on Linux

OR

Migration Assistant

Database and application migration process

• Database connectivity

• User login and permission

• Performance tuning

• Database Discovery

• Architecture requirements
• (HADR, performance, locale, maintenance, dependencies, and so on)

• Migration Assessment
• Complexity, effort, risk

• Schema conversion

• Data migration

• Embedded SQL statements

• ETL and batch

• System and DB interfaces

SQL Server Migration Assistant (SSMA)

Automates and simplifies all phases of database migration

Assess migration complexityMigration Analyzer

Convert schema and business logicSchema Converter

Migrate dataData Migrator

Supports migration from DB2, Oracle, SAP ASE, MySQL, or Access to SQL Server

Validate converted database codeMigration Tester

Using SQL Server Migration Assistant (SSMA)

SSMA: Automates components of database migrations to SQL Server;

DB2, Oracle, Sybase, Access, and MySQL analyzers are available

Assess the
migration project

Migrate schema
and business logic

Migrate data

Convert the application

Test, integrate,
and deploy

SSMA migration analyzer

SSMA data migrator

SSMA schema converter

Azure solution paths

Do not have to manage any VMs, OS or database software, including

upgrades, high availability, and backups.

Highly customized system to address the application’s specific performance

and availability requirements.

Azure migration tools and services

Assess Migrate

Legacy SQL Server instance

DMA: Assess and migrate schema

1. Assess and identify issues

2. Fix issues

3. Convert and

deploy schema

DMA

Oracle SQL

SQL DB

Azure Database Migration Service

Accelerating your journey to the cloud

• Streamline database migration to Azure SQL

Database (PaaS)

• Managed service platform for migrating databases

• Migrate SQL Server and third-party databases to

Azure SQL Database

The Microsoft
data platform

Internal and

external

DashboardsReports Ask Mobile

Information

managementOrchestration

Extract, transform,

load Prediction

Relational Nonrelational Analytical

Apps

Streaming

✓

Microsoft Azure

© 2017 Microsoft Corporation. All rights reserved. Microsoft, Windows, and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on

the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

